Composite materials in aerospace

The use of CFRP materials in aircraft manufacturing is taking off

Aerospace is one of the key sectors that has been driving the growth in use of composite materials in recent years, with large manufacturers attracted by the potential for significant reductions in fuel usage and carbon dioxide emissions.

Leading manufacturer Airbus has been a forerunner when it comes to adding composites to their range of aircraft. Some 70 percent of the materials used to make every Airbus A220 are advanced materials, with 46 percent being composite materials and 24 percent aluminium-lithium.

The design of Airbus’ long-haul A350 XWB aircraft places even more trust in composites; it’s 53 percent carbon-composite construction results in a 25 reduction in operating costs, fuel burn and CO2 emissions.

Economy and sustainability aren’t the only areas in which composites have delivered benefits to Airbus and their customers. The carbon composites used in the Airbus A350 XWB also enable a more spacious fuselage design as well as the highest possible air quality, with optimised cabin altitude and humidity levels for improved passenger comfort.

Elsewhere in Airbus’ aircraft line-up is the A400M, whose wings are primarily constructed from a carbon-fibre reinforced plastic, and whose eight-bladed Ratier-Figeac scimitar propellers are made from a woven carbon-fibre material.

And Airbus isn’t the only aerospace manufacturer enjoying success with composite materials. Since increasing the level of composites used in their aircraft, Bombardier claims to have achieved a 15 percent reduction in seat-mile cost, a 20 percent drop in fuel burn and a significant CO2 emissions advantage.

Composites are even set for orbit, with leading space industry innovator SpaceX having designed and constructed the world’s largest carbon-fibre composite fuel tank for their Big Falcon Rocket (BFR) interplanetary spaceship.

Source: Airbus

 

Our solutions

Explore Hexagon’s solutions for composite material inspection

Gestión del ciclo de vida de materiales para la industria aeroespacial

Los fabricantes aeroespaciales pueden mejorar el uso y la trazabilidad de los materiales, así como el diseño del producto al capturar, gestionar y...

Diseño de componente composite para aeronaves

El software de simulación se puede usar para reducir los ciclos de desarrollo al probar de forma virtual los componentes CFRP para la industria aeroespacial.

Simulación de capa de fibra de carbono para piezas aeroespaciales

La complejidad y el costo de crear componentes CFRP para aeronaves significa que los fabricantes se beneficien del análisis y simulación del impacto de...

HxGN LIVE

La conferencia anual internacional de Hexagon, HxGN LIVE, presenta ideas inspiradoras, redes de trabajo ilimitadas y tecnologías innovadoras.

About composite material inspection

High-definition camera-based measurement and analysis is the key to strength and consistency in composite material production.

Download the brochure

Download our full Composite Inspection Solutions brochure right now.